学术动态

当前位置: bet356体育在线官方网站 > 学术动态 > 正文

bet356体育在线官方网站学术报告(王亚飞)

发布日期:2022-12-08 作者: 来源:bet356体育在线官方网站 点击:

Title: A General Differentially Private Learning Framework for Decentralized Data

Abstract:Decentralized consensus learning has been hugely successful that minimizing a finite sum of expected objectives over a network of agents. However, the local communication across neighbouring agents in the network may lead to the leakage of private information. To address this challenge, we propose a general differentially private (DP) learning framework that is applicable to direct and indirect communication networks without a central coordinator. We show that the proposed algorithm retains the performance guarantee in terms of generalization and finite sample performance. We investigate the impact of local privacy-preserving computation on the global DP guarantee. Further, we extend the discussion by adopting a new class of noise-adding DP mechanisms based on generalized Gaussian distributions to improve the utility-privacy trade-offs. Our numerical results demonstrate the effectiveness of our algorithm and its better performance over the state-of-the-art baseline methods in various decentralized settings.

报告题目去中心化下保护数据隐私的学习框架

报告人:王亚飞(艾塞克斯大学)

报告时间2022年12月9日17:00

报告地点:388-974-689

主办单位bet356体育在线官方网站

报告对象bet356体育在线官方网站及全校感兴趣的教师、研究生和本科生

内容摘要去中心化学习通过极小化若干个服务器的损失总和受到广泛研究,但是服务器之间的信息传递会导致个人信息泄漏。我们提出一种可以保护数据隐私的学习框架,并且研究了所提算法的性质---泛化性,有限样本性质。此外,我们理论上给出了全局的隐私保护怎样受局部服务器的影响。考虑到所提算法的可行性,基于广义高斯分布,我们提出了一种新的加噪声的机制。

报告人简介

王亚飞,英国University of Essex,Assistant Professor,博士生导师。主要研究方向是复杂数据分析特别是影像数据分析, 随机优化。多项研究成果发表在JMVA, CSDA、NeurIPS, AAAI等国际顶级期刊。